2x^2-8x-9=1-8x

Simple and best practice solution for 2x^2-8x-9=1-8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-8x-9=1-8x equation:



2x^2-8x-9=1-8x
We move all terms to the left:
2x^2-8x-9-(1-8x)=0
We add all the numbers together, and all the variables
2x^2-8x-(-8x+1)-9=0
We get rid of parentheses
2x^2-8x+8x-1-9=0
We add all the numbers together, and all the variables
2x^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| 10x=2x(4x+2) | | r2+11r+28=0 | | 7x-1.2=3×-4.8 | | x+x+2x+2x=30 | | U=7×3.14z | | 20x=4x+2 | | (x-4)(2x+3)=-3(x-4) | | -7x-3.6=-8x-3.2 | | b*7/4=9 | | -3x-2.9=-9x-0.6 | | -7x-2.8=6x-2.9 | | 6=0.1x=0.15x+8 | | P=16+6d/13 | | 10b+2b=7b-15 | | -3x+1=8x+19.5 | | 0.60x+0.15(130)=0.30(133) | | 46(t+.50)+70t=104 | | 0.12(y-6)+0.16y=0.2y-0.01(60) | | 46(t+1/2)+70t=104 | | x-81=190 | | _x^=_2x^+16 | | 16-(4a-8)=12 | | x-0.25=4.3 | | 7x^2+29x=30 | | 18u-8=0 | | 80=25x | | x+41=100 | | -u+231=45 | | 14-5x=2× | | 193-w=130 | | 2x-3(x+1)=5x-8 | | 4.50+.2x=3.60+.75x |

Equations solver categories